Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons.
Publications by Author: Arpiar Saunders
S
G
The mouse cerebral cortex contains neurons that express choline acetyltransferase (ChAT) and are a potential local source of acetylcholine. However, the neurotransmitters released by cortical ChAT+ neurons and their synaptic connectivity are unknown. We show that the nearly all cortical ChAT+ neurons in mice are specialized VIP+ interneurons that release GABA strongly onto other inhibitory interneurons and acetylcholine sparsely onto layer 1 interneurons and other VIP+/ChAT+ interneurons. This differential transmission of ACh and GABA based on the postsynaptic target neuron is reflected in VIP+/ChAT+ interneuron pre-synaptic terminals, as quantitative molecular analysis shows that only a subset of these are specialized to release acetylcholine. In addition, we identify a separate, sparse population of non-VIP ChAT+ neurons in the medial prefrontal cortex with a distinct developmental origin that robustly release acetylcholine in layer 1. These results demonstrate both cortex-region heterogeneity in cortical ChAT+ interneurons and target-specific co-release of acetylcholine and GABA.
Neurons that produce acetylcholine (ACh) are positioned to broadly influence the brain, with axonal arborizations that extend throughout the cerebral cortex, striatum, and hippocampus. While the action of these neurons has typically been attributed entirely to ACh, neurons often release more than one primary neurotransmitter. Here, we review evidence for the cotransmission of the inhibitory neurotransmitter GABA from cholinergic neurons throughout the mammalian central nervous system. Functional cotransmission of ACh and GABA has been reported in the retina and cortex, and anatomical studies suggest that GABA cotransmission is a common feature of nearly all forebrain ACh-producing neurons. Further experiments are necessary to confirm the extent of GABA cotransmission from cholinergic neurons, and the contribution of GABA needs to be considered when studying the functional impact of activity in ACh-producing neurons. This article is part of the Special Issue entitled 'Synaptopathy–from Biology to Therapy'.