Potentiation of synaptic AMPA receptors induced by the deletion of NMDA receptors requires the GluA2 subunit.

Lu, Wei, John A Gray, Adam J Granger, Matthew J During, and Roger A Nicoll. 2011. “Potentiation of Synaptic AMPA Receptors Induced by the Deletion of NMDA Receptors Requires the GluA2 Subunit.”. Journal of Neurophysiology 105 (2): 923-8.
See also: Select Publication

Abstract

Deletion of N-methyl-D-aspartate receptors (NMDARs) early in development results in an increase in the number of synaptic AMPA receptors (AMPARs), suggesting a role for NMDARs in negatively regulating AMPAR trafficking at developing synapses. Substantial evidence has shown that AMPAR subunits function differentially in AMPAR trafficking. However, the role of AMPAR subunits in the enhancement of AMPARs following NMDAR ablation remains unknown. We have now performed single-cell genetic deletions in double-floxed mice in which the deletion of GluN1 is combined with the deletion of GluA1 or GluA2. We find that the AMPAR enhancement following NMDAR deletion requires the GluA2 subunit, but not the GluA1 subunit, indicating a key role for GluA2 in the regulation of AMPAR trafficking in developing synapses.

Last updated on 03/07/2022
PubMed