Publications

2024

Choi, Jayoung, Gayoung Park, Steve Seung-Young Lee, Erin Dominici, Lev Becker, Kay F Macleod, Stephen J Kron, and Seungmin Hwang. (2024) 2024. “Context-Dependent Roles for Autophagy in Myeloid Cells in Tumor Progression”. BioRxiv. https://doi.org/10.1101/2024.07.12.603292.

Autophagy is known to suppress tumor initiation by removing genotoxic stresses in normal cells. Conversely, autophagy is also known to support tumor progression by alleviating metabolic stresses in neoplastic cells. Centered on this pro-tumor role of autophagy, there have been many clinical trials to treat cancers through systemic blocking of autophagy. Such systemic inhibition affects both tumor cells and non-tumor cells, and the consequence of blocked autophagy in non-tumor cells in the context of tumor microenvironment is relatively understudied. Here, we examined the effect of autophagy-deficient myeloid cells on the progression of autophagy-competent tumors. We found that blocking autophagy only in myeloid cells modulated tumor progression markedly but such effects were context dependent. In a tumor implantation model, the growth of implanted tumor cells was substantially reduced in mice with autophagy-deficient myeloid cells; T cells infiltrated deeper into the tumors and were responsible for the reduced growth of the implanted tumor cells. In an oncogene-driven tumor induction model, however, tumors grew faster and metastasized more in mice with autophagy-deficient myeloid cells. These data demonstrate that the autophagy status of myeloid cells plays a critical role in tumor progression, promoting or suppressing tumor growth depending on the context of tumor-myeloid cell interactions. This study indicates that systemic use of autophagy inhibitors in cancer therapy may have differential effects on rates of tumor progression in patients due to effects on myeloid cells and that this warrants more targeted use of selective autophagy inhibitors in a cancer therapy in a clinical setting.

Pero, Joseph E, Elizabeth A Mueller, Ashley M Adams, Ramona S Adolph, Parikshit Bagchi, Dale Balce, Marcus Bantscheff, et al. (2024) 2024. “Discovery of Potent STT3A/B Inhibitors and Assessment of Their Multipathogen Antiviral Potential and Safety”. Journal of Medicinal Chemistry. https://doi.org/10.1021/acs.jmedchem.4c01402.

In the aftermath of the COVID-19 pandemic, opportunities to modulate biological pathways common to the lifecycles of viruses need to be carefully considered. N-linked glycosylation in humans is mediated exclusively by the oligosaccharyltransferase complex and is frequently hijacked by viruses to facilitate infection. As such, STT3A/B, the catalytic domain of the OST complex, became an intriguing drug target with broad-spectrum antiviral potential. However, due to the critical role N-linked glycosylation plays in a number of fundamental human processes, the toxicological ramifications of STT3A/B inhibition required attention commensurate to that given to antiviral efficacy. Herein, we describe how known STT3A/B inhibitor NGI-1 inspired the discovery of superior tool compounds which were evaluated in in vitro efficacy and translational safety (e.g., CNS, cardiovascular, liver) studies. The described learnings will appeal to those interested in the therapeutic utility of modulating N-linked glycosylation as well as the broader scientific community.

2023

Kurhade, Chaitanya, Soowon Kang, Scott B Biering, Seungmin Hwang, and Glenn Randall. (2023) 2023. “CAPRIN1 Is Required for Control of Viral Replication Complexes by Interferon Gamma”. MBio 14 (3): e0017223. https://doi.org/10.1128/mbio.00172-23.

Replication complexes (RCs), formed by positive-strand (+) RNA viruses through rearrangements of host endomembranes, protect their replicating RNA from host innate immune defenses. We have shown that two evolutionarily conserved defense systems, autophagy and interferon (IFN), target viral RCs and inhibit viral replication collaboratively. However, the mechanism by which autophagy proteins target viral RCs and the role of IFN-inducible GTPases in the disruption of RCs remains poorly understood. Here, using murine norovirus (MNV) as a model (+) RNA virus, we show that the guanylate binding protein 1 (GBP1) is the human GTPase responsible for inhibiting RCs. Furthermore, we found that ATG16L1 mediates the LC3 targeting of MNV RC by binding to WIPI2B and CAPRIN1, and that IFN gamma-mediated control of MNV replication was dependent on CAPRIN1. Collectively, this study identifies a novel mechanism for the autophagy machinery-mediated recognition and inhibition of viral RCs, a hallmark of (+) RNA virus replication. IMPORTANCE Replication complexes provide a microenvironment important for (+) RNA virus replication and shield it from host immune response. Previously we have shown that interferon gamma (IFNG) disrupts the RC of MNV via evolutionarily conserved autophagy proteins and IFN-inducible GTPases. Elucidating the mechanism of targeting of viral RC by ATG16L1 and IFN-induced GTPase will pave the way for development of therapeutics targeting the viral replication complexes. Here, we have identified GBP1 as the sole GBP targeting viral RC and uncovered the novel role of CAPRIN1 in recruiting ATG16L1 to the viral RC.

Qiang, Lei, Baozhong Zhao, Mei Ming, Ning Wang, Tong-Chuan He, Seungmin Hwang, Andrew Thorburn, and Yu-Ying He. (2023) 2023. “Autophagy Regulates Tumor Growth and Metastasis”. BioRxiv. https://doi.org/10.1101/2023.10.31.564991.

The role of autophagy in tumorigenesis and tumor metastasis remains poorly understood. Here we show that inhibition of autophagy stabilizes the transcription factor Twist1 through Sequestosome-1 (SQSTM1, also known as p62) and thus increases cell proliferation, migration, and epithelial-mesenchymal transition (EMT) in tumor development and metastasis. Inhibition of autophagy or p62 overexpression blocks Twist1 protein degradation in the proteasomes, while p62 inhibition enhances it. SQSTM1/p62 interacts with Twist1 via the UBA domain of p62, in a Twist1-ubiquitination-dependent manner. Lysine 175 in Twist1 is critical for Twist1 ubiquitination, degradation, and SQSTM1/p62 interaction. For squamous skin cancer and melanoma cells that express Twist1, SQSTM1/p62 increases tumor growth and metastasis in mice. Together, our results identified Twist1 as a key downstream protein for autophagy and suggest a critical role of the autophagy/p62/Twist1 axis in cancer development and metastasis.

McAllaster, Michael R, Jaya Bhushan, Dale R Balce, Anthony Orvedahl, Arnold Park, Seungmin Hwang, Meagan E Sullender, David Sibley, and Herbert W Virgin. (2023) 2023. “Autophagy Gene-Dependent Intracellular Immunity Triggered by Interferon-γ”. MBio 14 (6): e0233223. https://doi.org/10.1128/mbio.02332-23.

Genes required for the lysosomal degradation pathway of autophagy play key roles in topologically distinct and physiologically important cellular processes. Some functions of ATG genes are independent of their role in degradative autophagy. One of the first described of these ATG gene-dependent, but degradative autophagy independent, processes is the requirement for a subset of ATG genes in interferon-γ (IFNγ)-induced inhibition of norovirus and Toxoplasma gondii replication. Herein, we identified additional genes that are required for, or that negatively regulate, this innate immune effector pathway. Enzymes in the UFMylation pathway negatively regulated IFNγ-induced inhibition of norovirus replication via effects of Ern1. IFNγ-induced inhibition of norovirus replication required Gate-16 (also termed GabarapL2), Wipi2b, Atg9a, Cul3, and Klhl9 but not Becn1 (encoding Beclin 1), Atg14, Uvrag, or Sqstm1. The phosphatidylinositol-3-phosphate and ATG16L1-binding domains of WIPI2B, as well as the ATG5-binding domain of ATG16L1, were required for IFNγ-induced inhibition of norovirus replication. Other members of the Cul3, Atg8, and Wipi2 gene families were not required, demonstrating exquisite specificity within these gene families for participation in IFNγ action. The generality of some aspects of this mechanism was demonstrated by a role for GATE-16 and WIPI2 in IFNγ-induced control of Toxoplasma gondii infection in human cells. These studies further delineate the genes and mechanisms of an ATG gene-dependent programmable form of cytokine-induced innate intracellular immunity. IMPORTANCE Interferon-γ (IFNγ) is a critical mediator of cell-intrinsic immunity to intracellular pathogens. Understanding the complex cellular mechanisms supporting robust interferon-γ-induced host defenses could aid in developing new therapeutics to treat infections. Here, we examined the impact of autophagy genes in the interferon-γ-induced host response. We demonstrate that genes within the autophagy pathway including Wipi2, Atg9, and Gate-16, as well as ubiquitin ligase complex genes Cul3 and Klhl9 are required for IFNγ-induced inhibition of murine norovirus (norovirus hereinafter) replication in mouse cells. WIPI2 and GATE-16 were also required for IFNγ-mediated restriction of parasite growth within the Toxoplasma gondii parasitophorous vacuole in human cells. Furthermore, we found that perturbation of UFMylation pathway components led to more robust IFNγ-induced inhibition of norovirus via regulation of endoplasmic reticulum (ER) stress. Enhancing or inhibiting these dynamic cellular components could serve as a strategy to control intracellular pathogens and maintain an effective immune response.

2022

Anglero-Rodriguez, Yesseinia I., Florian A. Lempp, James McIninch, Mark K. Schlegel, Christopher R. Brown, Donald J. Foster, Adam B. Castoreno, et al. 2022. “Robust and durable prophylactic protection conferred by RNA interference in preclinical models of SARS-CoV-2”. BioRxiv. https://doi.org/10.1101/2022.03.20.485044.
RNA interference is a natural antiviral mechanism that could be harnessed to combat SARS-CoV-2 infection by targeting and destroying the viral genome. We screened lipophilic small-interfering RNA (siRNA) conjugates targeting highly conserved regions of the SARS-CoV-2 genome and identified leads targeting outside of the spike-encoding region capable of achieving >=3-log viral reduction. Serial passaging studies demonstrated that a two-siRNA combination prevented development of resistance compared to a single-siRNA approach. A two-siRNA combination delivered intranasally protected Syrian hamsters from weight loss and lung pathology by viral infection upon prophylactic administration but not following onset of infection. Together, the data support potential utility of RNAi as a prophylactic approach to limit SARS-CoV-2 infection that may help combat emergent variants, complement existing interventions, or protect populations where vaccines are less effective. Most importantly, this strategy has implications for developing medicines that may be valuable in protecting against future coronavirus pandemics.Competing Interest StatementAll authors were employees of Alnylam Pharmaceuticals or Vir Biotechnology with salary and stock or stock options when the work was conducted. HWV is a founder of PierianDx and Casma Therapeutics. Neither company provided funding for this work or is performing related work.
Cathcart, Andrea L., Colin Havenar-Daughton, Florian A. Lempp, Daphne Ma, Michael A. Schmid, Maria L. Agostini, Barbara Guarino, et al. 2022. “The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2”. BioRxiv. https://doi.org/10.1101/2021.03.09.434607.
Sotrovimab (VIR-7831) and VIR-7832 are dual action monoclonal antibodies (mAbs) targeting the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sotrovimab and VIR-7832 were derived from a parent antibody (S309) isolated from memory B cells of a 2003 severe acute respiratory syndrome coronavirus (SARS-CoV) survivor. Both mAbs contain an “LS” mutation in the Fc region to prolong serum half-life. In addition, VIR-7832 encodes an Fc GAALIE mutation that has been shown previously to evoke CD8+ T-cells in the context of an in vivo viral respiratory infection. Sotrovimab and VIR-7832 neutralize wild-type and variant pseudotyped viruses and authentic virus in vitro. In addition, they retain activity against monoclonal antibody resistance mutations conferring reduced susceptibility to previously authorized mAbs. The sotrovimab/VIR-7832 epitope continues to be highly conserved among circulating sequences consistent with the high barrier to resistance observed in vitro. Furthermore, both mAbs can recruit effector mechanisms in vitro that may contribute to clinical efficacy via elimination of infected host cells. In vitro studies with these mAbs demonstrated no enhancement of infection. In a Syrian Golden hamster proof-of concept wildtype SARS-CoV-2 infection model, animals treated with sotrovimab had less weight loss, and significantly decreased total viral load and infectious virus levels in the lung compared to a control mAb. Taken together, these data indicate that sotrovimab and VIR-7832 are key agents in the fight against COVID-19.Competing Interest StatementSome authors are current or former employees of Vir Biotechnology or Humabs BioMed SA (a fully-owned subsidiary of Vir Biotechnology) and may hold shares in Vir Biotechnology. H.W.V. is a founder of PierianDx and Casma Therapeutics.

2021

Klionsky, Daniel J, Amal Kamal Abdel-Aziz, Sara Abdelfatah, Mahmoud Abdellatif, Asghar Abdoli, Steffen Abel, Hagai Abeliovich, et al. (2021) 2021. “Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th Edition)1”. Autophagy 17 (1): 1-382. https://doi.org/10.1080/15548627.2020.1797280.

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

2020

McPhillie, Martin J, Ying Zhou, Mark R Hickman, James A Gordon, Christopher R Weber, Qigui Li, Patty J Lee, et al. (2020) 2020. “Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites”. Frontiers in Cellular and Infection Microbiology 10: 203. https://doi.org/10.3389/fcimb.2020.00203.

Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.

Furlong, Kevin, Scott B Biering, Jayoung Choi, Craig B Wilen, Robert C Orchard, Christiane E Wobus, Christopher A Nelson, et al. (2020) 2020. “CD300LF Polymorphisms of Inbred Mouse Strains Confer Resistance to Murine Norovirus Infection in a Cell Type-Dependent Manner”. Journal of Virology 94 (17). https://doi.org/10.1128/JVI.00837-20.

Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC' loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry.IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.