Synapse development is coordinated by a number of transmembrane and secreted proteins that come together to form synaptic organizing complexes. Whereas a variety of synaptogenic proteins have been characterized, much less is understood about the molecular networks that support the maintenance and functional maturation of nascent synapses. Here, we demonstrate that leucine-rich, glioma-inactivated protein 1 (LGI1), a secreted protein previously shown to modulate synaptic AMPA receptors, is a paracrine signal released from pre- and postsynaptic neurons that acts specifically through a disintegrin and metalloproteinase protein 22 (ADAM22) to set postsynaptic strength. We go on to describe a novel role for ADAM22 in maintaining excitatory synapses through PSD-95/Dlg1/zo-1 (PDZ) domain interactions. Finally, we show that in the absence of LGI1, the mature synapse scaffolding protein PSD-95, but not the immature synapse scaffolding protein SAP102, is unable to modulate synaptic transmission. These results indicate that LGI1 and ADAM22 form an essential synaptic organizing complex that coordinates the maturation of excitatory synapses by regulating the functional incorporation of PSD-95.
Collaborations
The amino-terminal domain (ATD) of AMPA receptors (AMPARs) accounts for approximately 50% of the protein, yet its functional role, if any, remains a mystery. We have discovered that the translocation of surface GluA1, but not GluA2, AMPAR subunits to the synapse requires the ATD. GluA1A2 heteromers in which the ATD of GluA1 is absent fail to translocate, establishing a critical role of the ATD of GluA1. Inserting GFP into the ATD interferes with the constitutive synaptic trafficking of GluA1, but not GluA2, mimicking the deletion of the ATD. Remarkably, long-term potentiation (LTP) can override the masking effect of the GFP tag. GluA1, but not GluA2, lacking the ATD fails to show LTP. These findings uncover a role for the ATD in subunit-specific synaptic trafficking of AMPARs, both constitutively and during plasticity. How LTP, induced postsynaptically, engages these extracellular trafficking motifs and what specific cleft proteins participate in the process remain to be elucidated.
Protein kinase A (PKA) integrates inputs from G-protein-coupled neuromodulator receptors to modulate synaptic and cellular function. Gαs signaling stimulates PKA activity, whereas Gαi inhibits PKA activity. Gαq, on the other hand, signals through phospholipase C, and it remains unclear whether Gαq-coupled receptors signal to PKA in their native context. Here, using two independent optical reporters of PKA activity in acute mouse hippocampus slices, we show that endogenous Gαq-coupled muscarinic acetylcholine receptors activate PKA. Mechanistically, this effect is mediated by parallel signaling via either calcium or protein kinase C. Furthermore, multiple Gαq-coupled receptors modulate phosphorylation by PKA, a classical Gαs/Gαi effector. Thus, these results highlight PKA as a biochemical integrator of three major types of GPCRs and necessitate reconsideration of classic models used to predict neuronal signaling in response to the large family of Gαq-coupled receptors.
Proper brain function depends on neurovascular coupling: neural activity rapidly increases local blood flow to meet moment-to-moment changes in regional brain energy demand1. Neurovascular coupling is the basis for functional brain imaging2, and impaired neurovascular coupling is implicated in neurodegeneration1. The underlying molecular and cellular mechanisms of neurovascular coupling remain poorly understood. The conventional view is that neurons or astrocytes release vasodilatory factors that act directly on smooth muscle cells (SMCs) to induce arterial dilation and increase local blood flow1. Here, using two-photon microscopy to image neural activity and vascular dynamics simultaneously in the barrel cortex of awake mice under whisker stimulation, we found that arteriolar endothelial cells (aECs) have an active role in mediating neurovascular coupling. We found that aECs, unlike other vascular segments of endothelial cells in the central nervous system, have abundant caveolae. Acute genetic perturbations that eliminated caveolae in aECs, but not in neighbouring SMCs, impaired neurovascular coupling. Notably, caveolae function in aECs is independent of the endothelial NO synthase (eNOS)-mediated NO pathway. Ablation of both caveolae and eNOS completely abolished neurovascular coupling, whereas the single mutants exhibited partial impairment, revealing that the caveolae-mediated pathway in aECs is a major contributor to neurovascular coupling. Our findings indicate that vasodilation is largely mediated by endothelial cells that actively relay signals from the central nervous system to SMCs via a caveolae-dependent pathway.
Neuronal activity-dependent gene expression is essential for brain development. Although transcriptional and epigenetic effects of neuronal activity have been explored in mice, such an investigation is lacking in humans. Because alterations in GABAergic neuronal circuits are implicated in neurological disorders, we conducted a comprehensive activity-dependent transcriptional and epigenetic profiling of human induced pluripotent stem cell-derived GABAergic neurons similar to those of the early developing striatum. We identified genes whose expression is inducible after membrane depolarization, some of which have specifically evolved in primates and/or are associated with neurological diseases, including schizophrenia and autism spectrum disorder (ASD). We define the genome-wide profile of human neuronal activity-dependent enhancers, promoters and the transcription factors CREB and CRTC1. We found significant heritability enrichment for ASD in the inducible promoters. Our results suggest that sequence variation within activity-inducible promoters of developing human forebrain GABAergic neurons contributes to ASD risk.