Publications

2014

Straub, Christoph, Adam J Granger, Jessica L Saulnier, and Bernardo L Sabatini. (2014) 2014. “CRISPR/Cas9-Mediated Gene Knock-down in Post-Mitotic Neurons.”. PloS One 9 (8): e105584. https://doi.org/10.1371/journal.pone.0105584.

The prokaryotic adaptive immune system CRISPR/Cas9 has recently been adapted for genome editing in eukaryotic cells. This technique allows for sequence-specific induction of double-strand breaks in genomic DNA of individual cells, effectively resulting in knock-out of targeted genes. It thus promises to be an ideal candidate for application in neuroscience where constitutive genetic modifications are frequently either lethal or ineffective due to adaptive changes of the brain. Here we use CRISPR/Cas9 to knock-out Grin1, the gene encoding the obligatory NMDA receptor subunit protein GluN1, in a sparse population of mouse pyramidal neurons. Within this genetically mosaic tissue, manipulated cells lack synaptic current mediated by NMDA-type glutamate receptors consistent with complete knock-out of the targeted gene. Our results show the first proof-of-principle demonstration of CRISPR/Cas9-mediated knock-down in neurons in vivo, where it can be a useful tool to study the function of specific proteins in neuronal circuits.

See also: Select Publication
Granger, Adam J, and Roger A Nicoll. (2014) 2014. “LTD Expression Is Independent of Glutamate Receptor Subtype.”. Frontiers in Synaptic Neuroscience 6: 15. https://doi.org/10.3389/fnsyn.2014.00015.

Long-term depression (LTD) is a form of synaptic plasticity that plays a major role in the activity-dependent reshaping of synaptic transmission. LTD is expressed as a decrease in synaptic AMPA receptor number, though the exact mechanism remains controversial. Several lines of evidence have suggested necessary roles for both the GluA1 and GluA2 subunits, and specifically certain interactions with their cytoplasmic tails. However, it is unclear if either GluA1 or GluA2 are absolutely required for LTD. We tested this hypothesis using constitutive knock-outs and single-cell molecular replacement of AMPA receptor subunits in mouse hippocampus. We found that neither GluA1 or GluA2 are required for normal expression of LTD, and indeed a normal decrease in synaptic transmission was observed in cells in which all endogenous AMPA receptors have been replaced by kainate receptors. Thus, LTD does not require removal of specific AMPA receptor subunits, but likely involves a more general modification of the synapse and its ability to anchor a broad range of receptor proteins.

See also: Select Publication
Granger, Adam J, and Roger A Nicoll. (2014) 2014. “Expression Mechanisms Underlying Long-Term Potentiation: A Postsynaptic View, 10 Years On.”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369 (1633): 20130136. https://doi.org/10.1098/rstb.2013.0136.

This review focuses on the research that has occurred over the past decade which has solidified a postsynaptic expression mechanism for long-term potentiation (LTP). However, experiments that have suggested a presynaptic component are also summarized. It is argued that the pairing of glutamate uncaging onto single spines with postsynaptic depolarization provides the final and most elegant demonstration of a postsynaptic expression mechanism for NMDA receptor-dependent LTP. The fact that the magnitude of this LTP is similar to that evoked by pairing synaptic stimulation and depolarization leaves little room for a substantial presynaptic component. Finally, recent data also require a revision in our thinking about the way AMPA receptors (AMPARs) are recruited to the postsynaptic density during LTP. This recruitment is independent of subunit type, but does require an adequate reserve pool of extrasynaptic receptors.

See also: Reviews

2013

Granger, Adam J, Yun Shi, Wei Lu, Manuel Cerpas, and Roger A Nicoll. (2013) 2013. “LTP Requires a Reserve Pool of Glutamate Receptors Independent of Subunit Type.”. Nature 493 (7433): 495-500. https://doi.org/10.1038/nature11775.

Long-term potentiation (LTP) of synaptic transmission is thought to be an important cellular mechanism underlying memory formation. A widely accepted model posits that LTP requires the cytoplasmic carboxyl tail (C-tail) of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GluA1. To find the minimum necessary requirement of the GluA1 C-tail for LTP in mouse CA1 hippocampal pyramidal neurons, we used a single-cell molecular replacement strategy to replace all endogenous AMPA receptors with transfected subunits. In contrast to the prevailing model, we found no requirement of the GluA1 C-tail for LTP. In fact, replacement with the GluA2 subunit showed normal LTP, as did an artificially expressed kainate receptor not normally found at these synapses. The only conditions under which LTP was impaired were those with markedly decreased AMPA receptor surface expression, indicating a requirement for a reserve pool of receptors. These results demonstrate the synapse's remarkable flexibility to potentiate with a variety of glutamate receptor subtypes, requiring a fundamental change in our thinking with regard to the core molecular events underlying synaptic plasticity.

See also: Select Publication

2011

Lu, Wei, John A Gray, Adam J Granger, Matthew J During, and Roger A Nicoll. (2011) 2011. “Potentiation of Synaptic AMPA Receptors Induced by the Deletion of NMDA Receptors Requires the GluA2 Subunit.”. Journal of Neurophysiology 105 (2): 923-8. https://doi.org/10.1152/jn.00725.2010.

Deletion of N-methyl-D-aspartate receptors (NMDARs) early in development results in an increase in the number of synaptic AMPA receptors (AMPARs), suggesting a role for NMDARs in negatively regulating AMPAR trafficking at developing synapses. Substantial evidence has shown that AMPAR subunits function differentially in AMPAR trafficking. However, the role of AMPAR subunits in the enhancement of AMPARs following NMDAR ablation remains unknown. We have now performed single-cell genetic deletions in double-floxed mice in which the deletion of GluN1 is combined with the deletion of GluA1 or GluA2. We find that the AMPAR enhancement following NMDAR deletion requires the GluA2 subunit, but not the GluA1 subunit, indicating a key role for GluA2 in the regulation of AMPAR trafficking in developing synapses.

See also: Select Publication
Granger, Adam J, John A Gray, Wei Lu, and Roger A Nicoll. (2011) 2011. “Genetic Analysis of Neuronal Ionotropic Glutamate Receptor Subunits.”. The Journal of Physiology 589 (17): 4095-101. https://doi.org/10.1113/jphysiol.2011.213033.

In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.

See also: Reviews

2007

Chen, Mo, Adam J Granger, Matthew W Vanbrocklin, William S Payne, Henry Hunt, Huanmin Zhang, Jerry B Dodgson, and Sheri L Holmen. (2007) 2007. “Inhibition of Avian Leukosis Virus Replication by Vector-Based RNA Interference.”. Virology 365 (2): 464-72.

RNA interference (RNAi) has recently emerged as a promising antiviral technique in vertebrates. Although most studies have used exogenous short interfering RNAs (siRNAs) to inhibit viral replication, vectors expressing short hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) are more efficient and are practical for in vivo delivery. In this study, replication competent retroviral vectors were designed to deliver shRNA-mirs targeting subgroup B avian leukosis virus (ALV), the most effective of which reduced expression of protein targets by as much as 90% in cultured avian cells. Cells expressing shRNA-mirs targeting the tvb receptor sequence or the viral env(B) sequence significantly inhibited ALV(B) replication. This study demonstrates efficient antiviral RNAi in avian cells using shRNA-mirs expressed from pol II promoters, including an inducible promoter, allowing for the regulation of the antiviral effect by doxycycline.

See also: Select Publication