Publications

2020

McCamphill P, Stoppel L, Senter R, Lewis M, Heynen A, Stoppel D, Sridhar V, Collins K, Shi X, Pan J, et al. Selective inhibition of glycogen synthase kinase 3α corrects pathophysiology in a mouse model of fragile X syndrome. Science Translational Medicine. 2020;12(544).
Fragile X syndrome is caused by FMR1 gene silencing and loss of the encoded fragile X mental retardation protein (FMRP), which binds to mRNA and regulates translation. Studies in the Fmr1-/y mouse model of fragile X syndrome indicate that aberrant cerebral protein synthesis downstream of metabotropic glutamate receptor 5 (mGluR5) signaling contributes to disease pathogenesis, but clinical trials using mGluR5 inhibitors were not successful. Animal studies suggested that treatment with lithium might be an alternative approach. Targets of lithium include paralogs of glycogen synthase kinase 3 (GSK3), and nonselective small-molecule inhibitors of these enzymes improved disease phenotypes in a fragile X syndrome mouse model. However, the potential therapeutic use of GSK3 inhibitors has been hampered by toxicity arising from inhibition of both α and β paralogs. Recently, we developed GSK3 inhibitors with sufficient paralog selectivity to avoid a known toxic consequence of dual inhibition, that is, increased β-catenin stabilization. We show here that inhibition of GSK3α, but not GSK3β, corrected aberrant protein synthesis, audiogenic seizures, and sensory cortex hyperexcitability in Fmr1-/y mice. Although inhibiting either paralog prevented induction of NMDA receptor-dependent long-term depression (LTD) in the hippocampus, only inhibition of GSK3α impaired mGluR5-dependent and protein synthesis-dependent LTD. Inhibition of GSK3α additionally corrected deficits in learning and memory in Fmr1-/y mice; unlike mGluR5 inhibitors, there was no evidence of tachyphylaxis or enhanced psychotomimetic-induced hyperlocomotion. GSK3α selective inhibitors may have potential as a therapeutic approach for treating fragile X syndrome.
Ghoshal A, Uygun D, Yang L, McNally J, Lopez-Huerta V, Arias-Garcia M, Baez-Nieto D, Allen A, Fitzgerald M, Choi S, et al. Effects of a patient-derived de novo coding alteration of CACNA1I in mice connect a schizophrenia risk gene with sleep spindle deficits. Translational Psychiatry. 2020;10(1):1–12.

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.

Brunklaus A, Du J, Steckler F, Ghanty I, Johannesen K, Fenger CD, Schorge S, Baez-Nieto D, Wang H-R, Allen A, et al. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia. 2020;61(3):387–399.
Voltage‐gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain‐expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN‐related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone.
Heyne H, Baez-Nieto D, Iqbal S, Palmer D, Brunklaus A, May P, Collaborative E, Johannesen K, Lauxmann S, Lemke J, et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Science translational medicine. 2020;12(556).
Malfunctions of voltage-gated sodium and calcium channels (encoded by SCNxA and CACNA1x family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF (n = 518) and GOF (n = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCNxA/CACNA1x family genes.

2019

Lu C, Shi X, Allen A, Baez-Nieto D, Nikish A, Sanjana N, Pan J. Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons. The FASEB Journal. 2019;33(4):5287–5299.
Overexpression of mouse neurogenin (Neurog)2 alone or in combination with mouse Neurog2/1 in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can rapidly produce high‐yield excitatory neurons. Here, we report a detailed characterization of human neuronal networks induced by the expression of human NEUROG2 together with human NEUROG2/1 in hESCs using molecular, cellular, and electrophysiological measurements over 60 d after induction. Both excitatory synaptic transmission and network firing activity increased over time. Strikingly, inhibitory synaptic transmission and GABAergic cells were identified from NEUROG2/1 induced neurons (iNs). To illustrate the application of such iNs, we demonstrated that the heterozygous knock out of SCN2A, whose loss‐of‐function mutation is strongly implicated in autism risk, led to a dramatic reduction in network activity in the NEUROG2/1 iNs. Our findings not only extend our understanding of the NEUROG2/1‐induced human neuronal network but also substantiate NEUROG2/1 iNs as an in vitro system for modeling neuronal and functional deficits on a human genetic background.—Lu, C., Shi, X., Allen, A., Baez‐Nieto, D., Nikish, A., Sanjana, N. E., Pan, J. Q. Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons.

2018

Tekin H, Simmons S, Cummings B, Gao L, Adiconis X, Hession C, Ghoshal A, Dionne D, Choudhury S, Yesilyurt V, et al. Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nature biomedical engineering. 2018;2(7):540–554.
Understanding neurological diseases requires tractable genetic systems, and engineered three-dimensional (3D) neural tissues are an attractive choice. Yet how the cellular transcriptomic profiles in these tissues are affected by the encapsulating materials and are related to the human brain transcriptome is not well understood. Here, we report the characterization of the effects of different culturing conditions on the transcriptomic profiles of induced neuronal cells and developed a method for the rapid generation of 3D co-cultures of neuronal and astrocytic cells from the same pool of human embryonic stem cells. By comparing the gene-expression profiles of neuronal cells in culture conditions relevant to the developing human brain, we found that modifying the degree of crosslinking of composite hydrogels can tune expression patterns so that they correlate with those of specific brain regions and developmental stages. Moreover, single-cell-sequencing results showed that our engineered tissues recapitulate transcriptional patterns of cell types in the human brain. Analyses of culturing conditions will inform the development of 3D neural tissues for use as tractable models of brain diseases.

2017

2016