Hwang H, Szucs MJ, Ding LJ, Allen A, Ren X, Haensgen H, Gao F, Rhim H, Andrade A, Pan JQ, et al. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome. Biological Psychiatry. 2021;89(3):256–269. doi:
Background Neurogranin (Ng), encoded by the schizophrenia risk gene NRGN, is a calmodulin-binding protein enriched in the postsynaptic compartments, and its expression is reduced in the postmortem brains of patients with schizophrenia. Experience-dependent translation of Ng is critical for encoding contextual memory, and Ng regulates developmental plasticity in the primary visual cortex during the critical period. However, the overall impact of Ng on the neuronal signaling that regulates synaptic plasticity is unknown. Methods Altered Ng expression was achieved via virus-mediated gene manipulation in mice. The effect on long-term potentiation (LTP) was accessed using spike timing–dependent plasticity protocols. Quantitative phosphoproteomics analyses led to discoveries in significant phosphorylated targets. An identified candidate was examined with high-throughput planar patch clamp and was validated with pharmacological manipulation. Results Ng bidirectionally modulated LTP in the hippocampus. Decreasing Ng levels significantly affected the phosphorylation pattern of postsynaptic density proteins, including glutamate receptors, GTPases, kinases, RNA binding proteins, selective ion channels, and ionic transporters, some of which highlighted clusters of schizophrenia- and autism-related genes. Hypophosphorylation of NMDA receptor subunit Grin2A, one significant phosphorylated target, resulted in accelerated decay of NMDA receptor currents. Blocking protein phosphatase PP2B activity rescued the accelerated NMDA receptor current decay and the impairment of LTP mediated by Ng knockdown, implicating the requirement of synaptic PP2B activity for the deficits. Conclusions Altered Ng levels affect the phosphorylation landscape of neuronal proteins. PP2B activity is required for mediating the deficit in synaptic plasticity caused by decreasing Ng levels, revealing a novel mechanistic link of a schizophrenia risk gene to cognitive deficits.


McCamphill P, Stoppel L, Senter R, Lewis M, Heynen A, Stoppel D, Sridhar V, Collins K, Shi X, Pan J, et al. Selective inhibition of glycogen synthase kinase 3α corrects pathophysiology in a mouse model of fragile X syndrome. Science Translational Medicine. 2020;12(544).
Fragile X syndrome is caused by FMR1 gene silencing and loss of the encoded fragile X mental retardation protein (FMRP), which binds to mRNA and regulates translation. Studies in the Fmr1-/y mouse model of fragile X syndrome indicate that aberrant cerebral protein synthesis downstream of metabotropic glutamate receptor 5 (mGluR5) signaling contributes to disease pathogenesis, but clinical trials using mGluR5 inhibitors were not successful. Animal studies suggested that treatment with lithium might be an alternative approach. Targets of lithium include paralogs of glycogen synthase kinase 3 (GSK3), and nonselective small-molecule inhibitors of these enzymes improved disease phenotypes in a fragile X syndrome mouse model. However, the potential therapeutic use of GSK3 inhibitors has been hampered by toxicity arising from inhibition of both α and β paralogs. Recently, we developed GSK3 inhibitors with sufficient paralog selectivity to avoid a known toxic consequence of dual inhibition, that is, increased β-catenin stabilization. We show here that inhibition of GSK3α, but not GSK3β, corrected aberrant protein synthesis, audiogenic seizures, and sensory cortex hyperexcitability in Fmr1-/y mice. Although inhibiting either paralog prevented induction of NMDA receptor-dependent long-term depression (LTD) in the hippocampus, only inhibition of GSK3α impaired mGluR5-dependent and protein synthesis-dependent LTD. Inhibition of GSK3α additionally corrected deficits in learning and memory in Fmr1-/y mice; unlike mGluR5 inhibitors, there was no evidence of tachyphylaxis or enhanced psychotomimetic-induced hyperlocomotion. GSK3α selective inhibitors may have potential as a therapeutic approach for treating fragile X syndrome.
Ghoshal A, Uygun D, Yang L, McNally J, Lopez-Huerta V, Arias-Garcia M, Baez-Nieto D, Allen A, Fitzgerald M, Choi S, et al. Effects of a patient-derived de novo coding alteration of CACNA1I in mice connect a schizophrenia risk gene with sleep spindle deficits. Translational Psychiatry. 2020;10(1):1–12.

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.